落地式ODF光纤配线架
石英材料的抗电磁干扰能力,保障了通信数据流的稳定性,地提升了光纤通信技术在强电环境下的应用效果。3)所需空间小。光纤传输芯极细,且为多芯传输,因而光缆直径小,地节约了空间,增强了其在特殊环境的应用。4)通讯容量大。光纤通信较微波通讯容量高出数十倍,与电缆铜线相比,光纤带宽要大得多,其与密集波技术的融合应用,有助于充分发挥带宽优势。5)保密性能佳。电磁波传播极易引发信息泄露,但光纤通信可有效避免此类问题,光信号泄露不会引发信息丢失,地确保了通信过程的安全性、可靠性。光作为传播介质,相比电来说其损耗非常低,而光自身的频带也比电宽许多倍,这使得光纤通信具备一个优势;其次因为光纤通信是在光导结构之中的,而泄露的少数射线也会被包裹层吸收,所以光纤通信的保密性和抗干扰能力都远强于电;另外由于光纤的体积非常小但是光可携带的信息量很大,这使得光纤通信传输速度快且容量大。
由于电力系统通信过程复杂,若运用传统通信方法势必会降低电网的输出效率,但光纤通信可满足不同接口需求,因而无需转化接口方式,实现了中断线输导与通信网络拓展性能的提升。此外,电力系统对于实时性要求较高,而光纤通信技术可以保障系统数据的实时传输,提升了电力通信效率。随着信息时代的到来,电力通信网络所面临的挑战日趋严峻,所需承担的使命越来越多,而光纤通信技术的应用有助于电力系统通信灵活性的提升,光纤通信强大的抗磁干扰性能,有助于减小外部环境对电力系统的干扰,有效控制电力通信安全事故的发生,提升电力通信网络的安全性、可靠性。较其他传导介质而言,光纤数据传输过程损耗更低,有助于大限度地保障数据完整性,促进其在长跨距传输中的应用。落地式ODF光纤配线架
随着电力系统的发展,电力通信所覆盖范围不断扩大,而光纤通信技术的应用不仅可以降低信息传输中的数据损耗,还有利于充分发挥光纤长距离传输优势,减少中继站建设,降低电力系统通信与运行成本。与邮电公用网络相比,电力系统通信对于可靠性、业务容量要求更高,因此,还需紧密结合电力通信特点与系统特征,促进光纤通信技术在电力系统中的有效应用,主要包括如下方面。光联网系统在电力系统中也有广泛应用,由于其增加了网络范围与节点数量,因而赋予光网络超大容量,强化了网络透明性,实现了与多个电力系统及信号的有效连接,提升了网络灵活性,促进了电力通信效率与性能提升。一旦电力系统出现故障,光联网可迅速恢复网络,大限度地降低故障危害,减少建网、运行与维护成本。此外,基于光纤通信的光放大、光交换技术促进了光放大器的研发,为全光网络、光弧子通信提供了技术支持,可有效解决电子交换容量问题,提升透明度与速率,节约电力建网与网络升级的成本。落地式ODF光纤配线架