FTB1分2光分路器
插片式光分路器主要用于楼道光分路箱内,可通过灵活的增加插片式光分路器数量,实现端口的扩容。光分插片采用平面光波导(PLC)光分路器,使用的光纤活动连接可为SC型或LC型。光纤阵列(FiberArray)采用V型槽制作,利用特殊的粘合工艺实现准确的光纤定位和高可靠性,以满足不同的需求。热膨胀系数匹配的封装设计保证了光纤阵列板无应力,高可靠性和高温下无光纤移位。PLC分路器采用半导体工艺(光刻,腐蚀,显影等技术)制作。光波导阵列位于芯片的上表面,分路功能集成在芯片上,也就是在一只芯片上实现1XN分路;然后,在芯片两端分别耦合输入端以及输出端的多通道光纤阵列(FIBERARRAY)并进行封装。PLC基于平面技术的集成光学器件,与熔融拉锥技术(FTB)相比,平面波导技术具有性能稳定,成本低廉,适于规模化生产等显著特点。
在光纤通信理论教学中,无论是有源还是无源光器件,其宏观结构及原理不难讲解,学生也容易理解。然而,分析或测试光器件中的波传播、反射、散射、衍射、偏振以及非线性现象,将涉及非常复杂的数学推导和电磁场求解问题,如果仅仅通过理论讲解很难取得好的教学效果。对于这类问题,可以利用OptiWave的光学模拟软件OptiFDTD来加以解决。光纤和集成光栅为光信号传输组件,是光纤通信系统组成的三大部分之一。从宏观角度,光纤的基本概念、结构及导光原理比较容易理解,但是,光纤的参数如截面尺寸、材料成分和折射率分布如何影响光纤的线性和非线性效应等光学性能问题则比较复杂,单纯从理论上讲解,学生难以理解透彻。对于光纤和集成光栅的理论教学,可以引入OptiFiber和OptiGrating来模拟,利用OptiFiber模拟各种常用光纤并分析其光学性能,利用OptiGrating来模拟复杂的集成光纤光栅或波导光栅。FTB1分2光分路器
光纤通信是通信类的主干必修课程,其理论性和实践性都很强。在该课程教学过程中,既要注重理论教学方法,也要强调实践教学方法,也就是说要两者并重。本文针对光纤通信传统教学模式存在的缺陷,将光学模拟方法引入理论教学和实际教学中,能够进一步激发学生的学习兴趣,培养学生的实践和创新能力,取得较好的教学效果。当然,光纤通信课程教学模式的改革与探索是一个长期的过程,只有把提高教学效果和培养学生综合能力作为衡量课程改革和探索的标准,才能把握其正确方向。光纤通信技术概念。将模拟电信号转化为光信号,以光波作为载波,以光纤作为介质进行信息传输的技术被称之为光纤通信技术。光纤模拟通信系统。在发射端通过放大和预调制基带信号对电信号进行处理,在接收端通过解调和放大等处理将正常电信号释放出来。光纤数字通信系统。FTB1分2光分路器